Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Cell Rep Med ; 3(8): 100697, 2022 08 16.
Article in English | MEDLINE | ID: covidwho-2276666

ABSTRACT

The current strategy to detect immunodominant T cell responses focuses on the antigen, employing large peptide pools to screen for functional cell activation. However, these approaches are labor and sample intensive and scale poorly with increasing size of the pathogen peptidome. T cell receptors (TCRs) recognizing the same epitope frequently have highly similar sequences, and thus, the presence of large sequence similarity clusters in the TCR repertoire likely identify the most public and immunodominant responses. Here, we perform a meta-analysis of large, publicly available single-cell and bulk TCR datasets from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected individuals to identify public CD4+ responses. We report more than 1,200 αßTCRs forming six prominent similarity clusters and validate histocompatibility leukocyte antigen (HLA) restriction and epitope specificity predictions for five clusters using transgenic T cell lines. Collectively, these data provide information on immunodominant CD4+ T cell responses to SARS-CoV-2 and demonstrate the utility of the reverse epitope discovery approach.


Subject(s)
COVID-19 , SARS-CoV-2 , CD4-Positive T-Lymphocytes/chemistry , Epitopes/analysis , Humans , Receptors, Antigen, T-Cell/genetics , T-Cell Antigen Receptor Specificity
2.
Front Immunol ; 12: 755891, 2021.
Article in English | MEDLINE | ID: covidwho-1674329

ABSTRACT

The immune response promoted by SARS-CoV-2 vaccination is relevant to develop novel vaccines and optimized prevention strategies. We analyzed the adaptive immunity in healthy donors (HD) and convalescent individuals (CD), before and after administering BNT162b2 vaccine. Our results revealed specific changes in CD4+ T cell reactivity profile in vaccinated HD and CD, with an increase in S1 and S2 positive individuals, proportionally higher for S2. On the contrary, NCAP reactivity observed in HD and CD patients was no longer detectable after vaccination. Despite the substantial antibody response in CD, MPro-derived peptides did not elicit CD4+ lymphocyte activation in our assay in either condition. HD presented an increment in anti-S and anti-RBD IgG after first dose vaccination, which increased after the second vaccination. Conversely, anti-S and anti-RBD IgG and IgA titers increased in already positive CD after first dose administration, remaining stable after second dose inoculation. Interestingly, we found a strong significant correlation between S1-induced CD4+ response and anti-S IgA pre-vaccination, which was lost after vaccine administration.


Subject(s)
BNT162 Vaccine/immunology , CD4-Positive T-Lymphocytes/immunology , COVID-19/immunology , SARS-CoV-2/physiology , Adult , Cells, Cultured , Convalescence , Female , Healthy Volunteers , Humans , Immunization, Secondary , Immunoglobulin A/metabolism , Immunoglobulin G/metabolism , Male , Middle Aged , Spike Glycoprotein, Coronavirus/immunology , T-Cell Antigen Receptor Specificity , Vaccination
3.
J Immunol ; 207(10): 2399-2404, 2021 11 15.
Article in English | MEDLINE | ID: covidwho-1450887

ABSTRACT

Immunity to pulmonary infection typically requires elicitation of lung-resident T cells that subsequently confer protection against secondary infection. The presence of tissue-resident T cells in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) convalescent patients is unknown. Using a sublethal mouse model of coronavirus disease 2019, we determined if SARS-CoV-2 infection potentiated Ag-specific pulmonary resident CD4+ and CD8+ T cell responses and if these cells mediated protection against secondary infection. S protein-specific T cells were present in resident and circulating populations. However, M and N protein-specific T cells were detected only in the resident T cell pool. Using an adoptive transfer strategy, we found that T cells from SARS-CoV-2 immune animals did not protect naive mice. These data indicate that resident T cells are elicited by SARS-CoV-2 infection but are not sufficient for protective immunity.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Lung/immunology , SARS-CoV-2/physiology , Adoptive Transfer , Angiotensin-Converting Enzyme 2/genetics , Animals , Cells, Cultured , Disease Models, Animal , Disease Resistance , Humans , Mice , Mice, Inbred C57BL , Mice, Transgenic , Spike Glycoprotein, Coronavirus/immunology , T-Cell Antigen Receptor Specificity
4.
PLoS Pathog ; 17(9): e1009842, 2021 09.
Article in English | MEDLINE | ID: covidwho-1416911

ABSTRACT

The aim of this study was to define the breadth and specificity of dominant SARS-CoV-2-specific T cell epitopes using a comprehensive set of 135 overlapping 15-mer peptides covering the SARS-CoV-2 envelope (E), membrane (M) and nucleoprotein (N) in a cohort of 34 individuals with acute (n = 10) and resolved (n = 24) COVID-19. Following short-term virus-specific in vitro cultivation, the single peptide-specific CD4+ T cell response of each patient was screened using enzyme linked immuno spot assay (ELISpot) and confirmed by single-peptide intracellular cytokine staining (ICS) for interferon-γ (IFN-γ) production. 97% (n = 33) of patients elicited one or more N, M or E-specific CD4+ T cell responses and each patient targeted on average 21.7 (range 0-79) peptide specificities. Overall, we identified 10 N, M or E-specific peptides that showed a response frequency of more than 36% and five of them showed high binding affinity to multiple HLA class II binders in subsequent in vitro HLA binding assays. Three peptides elicited CD4+ T cell responses in more than 55% of all patients, namely Mem_P30 (aa146-160), Mem_P36 (aa176-190), both located within the M protein, and Ncl_P18 (aa86-100) located within the N protein. These peptides were further defined in terms of length and HLA restriction. Based on this epitope and restriction data we developed a novel DRB*11 tetramer (Mem_aa145-164) and examined the ex vivo phenotype of SARS-CoV-2-specific CD4+ T cells in one patient. This detailed characterization of single T cell peptide responses demonstrates that SARS-CoV-2 infection universally primes a broad T cell response directed against multiple specificities located within the N, M and E structural protein.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Acute Disease , Adult , Aged , Cohort Studies , Coronavirus Envelope Proteins/immunology , Coronavirus Nucleocapsid Proteins/immunology , Enzyme-Linked Immunospot Assay , Epitopes, T-Lymphocyte/immunology , Female , Humans , Male , Middle Aged , Phosphoproteins/immunology , Spike Glycoprotein, Coronavirus/immunology , Survivors , T-Cell Antigen Receptor Specificity , Viral Matrix Proteins/immunology
5.
Eur J Immunol ; 51(12): 3239-3242, 2021 12.
Article in English | MEDLINE | ID: covidwho-1413180

ABSTRACT

Antigen-specific T-cells are essential for protective immunity against SARS-CoV-2. We set up a semi-automated whole-blood Interferon-gamma release assay (WB IGRA) to monitor the T-cell response after stimulation with SARS-CoV-2 peptide pools. We report that the WB IGRA is complementary to serological assays to assess SARS-CoV-2 immunity.


Subject(s)
COVID-19/immunology , Interferon-gamma/metabolism , Memory T Cells/immunology , SARS-CoV-2/physiology , Adult , Automation, Laboratory , Cells, Cultured , Cohort Studies , Female , Humans , Interferon-gamma Release Tests/standards , Lymphocyte Activation , Male , Middle Aged , T-Cell Antigen Receptor Specificity , Whole Body Imaging , Young Adult
6.
J Exp Med ; 218(4)2021 04 05.
Article in English | MEDLINE | ID: covidwho-1387677

ABSTRACT

SARS-CoV-2 is responsible for an ongoing pandemic that has affected millions of individuals around the globe. To gain further understanding of the immune response in recovered individuals, we measured T cell responses in paired samples obtained an average of 1.3 and 6.1 mo after infection from 41 individuals. The data indicate that recovered individuals show persistent polyfunctional SARS-CoV-2 antigen-specific memory that could contribute to rapid recall responses. Recovered individuals also show enduring alterations in relative overall numbers of CD4+ and CD8+ memory T cells, including expression of activation/exhaustion markers, and cell division.


Subject(s)
COVID-19/immunology , COVID-19/virology , Host-Pathogen Interactions/immunology , Immunity, Cellular , SARS-CoV-2/immunology , Adult , Aged , Antigens, Viral/immunology , Biomarkers , Female , Humans , Immunophenotyping , Lymphocyte Count , Male , Middle Aged , T-Cell Antigen Receptor Specificity , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Young Adult
7.
Front Immunol ; 12: 626308, 2021.
Article in English | MEDLINE | ID: covidwho-1190310

ABSTRACT

We have previously shown that conformational change in the ß2-integrin is a very early activation marker that can be detected with fluorescent multimers of its ligand intercellular adhesion molecule (ICAM)-1 for rapid assessment of antigen-specific CD8+ T cells. In this study, we describe a modified protocol of this assay for sensitive detection of functional antigen-specific CD4+ T cells using a monoclonal antibody (clone m24 Ab) specific for the open, high-affinity conformation of the ß2-integrin. The kinetics of ß2-integrin activation was different on CD4+ and CD8+ T cells (several hours vs. few minutes, respectively); however, m24 Ab readily stained both cell types 4-6 h after antigen stimulation. With this protocol, we were able to monitor ex vivo effector and memory CD4+ and CD8+ T cells specific for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), cytomegalovirus (CMV), Epstein-Barr virus (EBV), and hepatitis B virus (HBV) in whole blood or cryopreserved peripheral blood mononuclear cells (PBMCs) of infected or vaccinated individuals. By costaining ß2-integrin with m24 and CD154 Abs, we assessed extremely low frequencies of polyfunctional CD4+ T cell responses. The novel assay used in this study allows very sensitive and simultaneous screening of both CD4+ and CD8+ T cell reactivities, with versatile applicability in clinical and vaccination studies.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Host-Pathogen Interactions/immunology , Integrins/metabolism , Adult , Aged , Amino Acid Sequence , Binding Sites , COVID-19/genetics , COVID-19/immunology , COVID-19/metabolism , COVID-19/virology , Carrier Proteins/chemistry , Cytokines/metabolism , Cytomegalovirus/immunology , Epitopes, T-Lymphocyte/chemistry , Epitopes, T-Lymphocyte/immunology , Female , HLA Antigens/chemistry , HLA Antigens/immunology , Host-Pathogen Interactions/genetics , Humans , Immunohistochemistry , Immunophenotyping , Integrins/genetics , Intercellular Adhesion Molecule-1/chemistry , Intercellular Adhesion Molecule-1/metabolism , Lymphocyte Activation/immunology , Male , Middle Aged , Protein Binding , Protein Multimerization , SARS-CoV-2/immunology , T-Cell Antigen Receptor Specificity , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism
8.
Immunity ; 53(6): 1258-1271.e5, 2020 12 15.
Article in English | MEDLINE | ID: covidwho-988080

ABSTRACT

CD4+ T cells reactive against SARS-CoV-2 can be found in unexposed individuals, and these are suggested to arise in response to common cold coronavirus (CCCoV) infection. Here, we utilized SARS-CoV-2-reactive CD4+ T cell enrichment to examine the antigen avidity and clonality of these cells, as well as the relative contribution of CCCoV cross-reactivity. SARS-CoV-2-reactive CD4+ memory T cells were present in virtually all unexposed individuals examined, displaying low functional avidity and multiple, highly variable cross-reactivities that were not restricted to CCCoVs. SARS-CoV-2-reactive CD4+ T cells from COVID-19 patients lacked cross-reactivity to CCCoVs, irrespective of strong memory T cell responses against CCCoV in all donors analyzed. In severe but not mild COVID-19, SARS-CoV-2-specific T cells displayed low functional avidity and clonality, despite increased frequencies. Our findings identify low-avidity CD4+ T cell responses as a hallmark of severe COVID-19 and argue against a protective role for CCCoV-reactive T cells in SARS-CoV-2 infection.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , COVID-19/immunology , Receptors, Antigen, T-Cell/metabolism , Rhinovirus/immunology , SARS-CoV-2/immunology , Antigens, Viral/immunology , Cells, Cultured , Cross Reactions , Disease Progression , Environmental Exposure , Humans , Immunologic Memory , Lymphocyte Activation , Protein Binding , Severity of Illness Index , T-Cell Antigen Receptor Specificity
SELECTION OF CITATIONS
SEARCH DETAIL